\qquad

1. How many real solutions does this system have?

$$
\begin{array}{r}
x^{2}+y^{2}=25 \\
x-3 y=15
\end{array}
$$

A. 1
B. 2
C. 4
D. 0
2. Solve the system: $y=-x^{2}+1$
$y=2 x+1$
A. $(0,1)$
B. $(-2,-5),(0,1)$
C. $(0,1),(2,-3)$
D. $(0,1),(-2,-3)$
3. Write the number and the nature of the roots of the quadratic equation whose discriminant is -12 .
A. no roots
B. 1 real rational root
C. 2 real rational roots
D. 2 imaginary roots (complex conjugates)
4. The shortest side of a triangle has a length of 14. The other sides have lengths $x+1$ and $x+3$. Find the value of x that makes the triangle a right triangle.
A. 188
B. 47
C. 23
D. 1
5. Compared to its 'parent' function $f(x)=x^{2}$, which of these best describes the function $f(x)=2 x^{2}+1$?
A. it is narrower and translated up
B. it is wider and translated up
C. it is wider and translated down
D. it is narrower and translated down
6. If $f(x)=x^{3}$ is transformed into the graph of $h(x)=(x-3)^{3}-2$, which of the following describes the transformation?
A. Translation of 3 units to the right and 2 units down
B. Translation of 3 units to the left and 2 units down
C. Translation of 2 units to the right and 3 units down
D. Translation of 2 units to the left and 3 units down
7. Given $f(x)=\sqrt{x}$. The following is a table of values for $g(x)$, which is a translation of $f(x)$.

x	$g(x)$
2	0
3	1
6	2

Based on the values in the table, $g(x)=$
A. $f(x+2)$
B. $f(x-2)$
C. $f(x)+2$
D. $f(x)-2$
8. Let $f(x)=\sqrt{x-7}+1$. If $g(x)=f(x+7)-6$, then which of the following is equivalent to $g(x)$?
A. $\sqrt{x}-5$
B. $\sqrt{0}-5$
C. $\sqrt{x}-6$
D. $\sqrt{x}+7$
9. Given $f(x)=\sqrt{x}$ and $g(x)=\sqrt{x-5}$. Which of the following statements are true?
I. $\quad f$ and g have the same domain
II. f and g have the same range
III. $g(x)=f(x-5)$
IV. $g(x)=f(x)-5$
A. I, II
B. II, III
C. II, IV
D. III only
10. Given $f(x)=\sqrt{x}$ and $g(x)=-\sqrt{x}+2$. Describe the changes that occur when $f(x)$ is transformed into $g(x)$.
I. change in range, but no change in domain
II. change in domain, but no change in range
III. reflection over the y-axis
IV. reflection over the x-axis
A. I, III
B. I, II, III
C. I, IV
D. II, IV
11. $\left(16 x^{-6} y^{2}\right)^{-\frac{1}{2}}=$
A. $\frac{x^{3}}{4 y}$
B. $-\frac{x^{3}}{4 y}$
C. $\frac{4 x^{3}}{y}$
D. $-\frac{4 x^{3}}{y}$
12. Write an equation for m, if m varies directly as d and inversely as the cube of p. Let k be the constant of variation.
A. $m=k d \sqrt[3]{p}$
B. $m=\frac{k d}{p^{3}}$
C. $m=\frac{k d}{\sqrt[3]{p}}$
D. $m=\frac{k p^{3}}{d}$
13. Which of the following tables is an inverse variation?
A.

x	y
1	5
2	10
4	20

B.

x	y
1	30
2	15
3	10

C.

x	y
1	10
2	15
3	20

D.

x	y
1	15
2	15
3	15

14. Given q varies inversely as r, and $q=10$ when $r=5$. What is q when $r=2$?
A. 25
B. 20
C. 10
D. 2.5
15. The illumination of a bulb varies inversely as the square of the distance from the bulb. If the illumination is 8 units at a distance of 8 m , then what is the illumination at a distance of 4 m from the bulb?
A. $8 \sqrt{2}$
B. 16
C. 32
D. 128
16. T varies jointly as B and the square of M, and inversely as W. If $T=40$ when $B=8, M=5$, and $W=20$, what is the value of B when $M=4, W=10$, and $T=8$?
A. 1
B. $\frac{5}{4}$
C. 5
D. 64
17. A varies jointly as B and the square of C, and inversely as $2 R$. If $A=8$ when $B=5, C=4$, and $R=10$, what is the value of B when $C=6, R=12$, and $A=10$?
A. $\frac{1}{10}$
B. $\frac{3}{10}$
C. $\frac{10}{3}$
D. 5
18. Let $f(x)=\frac{1}{x}$ and $g(x)=\frac{1}{(x+3)}$.

Describe the transformation from $f(x)$ to $g(x)$.
A. translated 3 units to the right
B. translated 3 units up
C. translated 3 units to the left
D. translated 3 units down
19. What is the extraneous root of $\sqrt{3 x+10}=x-10$?
A. -18
B. -5
C. 5
D. 18
20. Solve: $2=\sqrt{3 x-4}$
A. 2
B. $2 \frac{2}{3}$
C. 12
D. 18
21. Solve: $\sqrt{1-2 x}-7=x$
A. $-4,-12$
B. -4
C. $-6,-8$
D. -7
22. When expressed in terms of the imaginary unit i, $\sqrt{-8}$ can be represented as \qquad _.
A. $-8 i$
B. $2 i \sqrt{2}$
C. $2 i \sqrt{4}$
D. $8 i$
23. Express $4 \sqrt{-32}$ in terms of i.
A. $16 i$
B. $8 i \sqrt{2}$
C. $16 i \sqrt{2}$
D. $8 i$
24. Simplify:

$$
\sqrt{-25}-4 \sqrt{-9}
$$

A. 0
B. $-7 i$
C. $7 i$
D. $17 i$
25. Simplify:

$$
\sqrt{5} \cdot \sqrt{-20}
$$

A. $10 i$
B. $-10 i$
C. $100 i$
D. $-100 i$
26. Express the product in standard form.

$$
(4+2 i)(7-6 i)
$$

A. $40+10 i$
B. $40-10 i$
C. $16+10 i$
D. $16-10 i$

Problem-Attic format version 4.4.315
(c) 2011-2017 EducAide Software Licensed for use by Aubrey Parker Terms of Use at www.problem-attic.com
1.

Answer: B Objective: A.REI. 7
2.

Answer: D
Objective: A.REI. 7
3.

Answer: D
Objective: A.REI.4B
4.

Answer: B
Objective: A.REI.4B
5.

Answer: A
Objective: F.BF. 3
6.

Answer: A
Objective: F.BF. 3
7.

Answer: B
Objective: F.BF. 3
8.

Answer: A
Objective: L.04C
9.

Answer: B
Objective: L.04C
10.

Answer: C
Objective: L.04C
11.

Answer: A
Objective: A.11B
12.

Answer: B
Objective: L.06L
13.

Answer: B
Objective: L.06L
14.

Answer: A
Objective: L.06L
15.

Answer: C
Objective: L.06L
16.

Answer: B
Objective: L.06L
17.

Answer: C
Objective: L.06L
18.

Answer: C
Objective: L.06G
19.

Answer: C
Objective: L.04G
20.

Answer: B
Objective: L.04F
21.

Answer: B
Objective: L.04F
22.

Answer: B
Objective: A2.N.1.2
23.

Answer: C
Objective: A2.N.1.2
24.

Answer: B
Objective: A2.N.1.2
25.

Answer: A
Objective: A2.N.1.2
26.

Answer: B
Objective: A2.N.1.2

